
EAC-02-U.2.05

Ultra Long-Life Spacecraft For long Duration Space Exploration Missions

Savio N. Chau, Abhijit Sengupta, Tuan A. Tran, Aljreza Bakhshi
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Caiifornia, USA

53rd International Astronautical Congress
The World Space Congress - 2002

For permission to copy or repubIish, contact the International Astronautical Federation
3-5 Rue Mario-Nikis, 75015 Paris, France

ULTRA LONG-LIFE SPACECRAFT FOR
LONG DURATION SPACE EXPLORATION MISSIONS

Savio N. Chau Abhijit Sengupta Turn A. Tran Alireza Bakhshi
Principal Engineer Senior Engineer Senior Engineer Senior Engineer

Jet Propulsion Laboratory, California Institute of Technology
Pasadena, California, USA
Savio .n.chau@jpl .nasa. gov

ABSTRACT

The predominant failure mode in an ultra long-
life system is the wear-out of components. In
order to survive long duration missions, current
fault tolerant design techniques would require
excessive number of redundant components.
This paper describes a more efficient fault-
tolerant avionics system architecture that
requires much less redundant components. This
architecture employs generic function blocks
that can be programmed to replace a wide
variety of components in-flight. Hence, each
individual generic block is essentially equivalent
to almost an entire redundant string of
components in the conventional approach. In
that way, the ultra long-life system can achieve
much higher level of reliability while carrying
much less components. On the other hand, due
to the programmability of the generic redundant
blocks, the physical location of a specific
component might not be pre-determined.
Therefore, wireless interconnection is employed
to provide the necessary flexibility in
connectivity. A testbed of this architecture is
being developed at the Jet Propulsion
Laboratory.

INTRODUCTION

After decades of Solar System exploration,
NASA is close to completion of the initial
reconnaissance, and has began landing and
sample return missions on many planets,
satellites, cornets, and asteroids. The next
logical step for space exploration is to expand
the frontier to the far reaches and beyond the
solar system. Possible missions include Pluto
and Kuiper Belt objects sample return or
interstellar space exploration. These missions
can easily last for more than 30 to 50 years.

In addition to deep space exploration, many
terrestrial spacecrafts also require ultra long life
design. One of the major factors in the
maintenance cost of communication satellite
networks is the replacement of failed
spacecrafts. The total cost for manufacturing,
testing, and launch to replace a failed satellite
exceeds hundreds of millions of dollars. In
addition, there are also costs associated with the
lost of services during a down time.

Ultra long-life space systems need breakthrough
technologies in four main areas [11:
0

a

a

long-tern survivability - to handle failures
due to random events, design errors, and wear-
out mechanisms;
optimal management (administration) of
consumable resources - to maximize the
acquisition and minimize the consumption of
consumable resources such as power, fuel, and
the generic blocks;
evolvability and adaptability - to have built-in
mechanisms so that the capabilities and
functions of the spacecraft can be updated
after launch; otherwise, the useful life of the
spacecraft will be limited by the obsolescence
of the on-board technology, and
long-term operation of the spacecraft - to
reduce the operation costs and maintain a
workforce knowledgeable of the spacecraft.

The following discussion will focus on the
architectural aspect of the long-term
survivability.

LIMITATION OF CONVENTIONAL FATJLT
TOLERANT AVIONICS ARCHITECTURES

The current technologies and spacecraft design
techniques are not adequate to support a 50-year

mission. While all spacecraft avionics
architectures have fault tolerance, they are
designed to tolerate random failures, which can
be handled effectively by dual or triple
redundancy for a relatively short mission life.
However, they are not suitable for long duration
missions since they are not very efficient in
utilizing redundant components. For example,
in dual-string architecture, the system fails when
the processors in both strings have failed. It is
impossible to use the other components in the
system to resurrect the system even though they
are still functioning properly. Consequently, the
improvement of system reliability by the
conventional fault tolerance architecture will
diminish in time. This can be illustrated by
reliability modeling as shown in Figure 1.

100%
80%

Z .- 60%
.- m 40%

0%

ZI

a - 2 20%

0 5 ' IO 15 20 25 30 35 40 45 50
Years

I -Dual String (component cross-strap)
~ -Single String

Figure 1 : Reliability of Single and Dual String Systems

Furthermore, the predominant failure mode in an
ultra long-life system is the wear-out of
components. All active components in the
system are destined to fail before the end of the
mission. Therefore, the conventional fault
tolerant architecture would require many more
redundant Components, as they are not efficient
in utilizing the redundant components. An ultra
long life missions would require much more
efficient fault tolerant architecture to reduce the
number of redundant components required.

AN AVIONICS ARCHITECTURE FOR
U L T M LONG LIFE MISSIONS

The NASA Exploration Team has developed a
highly reconfigurable avionics system
architecture that uses redundant resources much
more efficiently. This architecture employs
Generic Function Blocks that can be configured

or programmed in-flight. This is illustrated in
Figure 2.

Function Function

> 2 2 ~ e s s lnterconnectio

t
I

Figure 2: Avionics System with Generic Function Blocks

When any function block fails, one of the
Generic Function Blocks will be configured to
replace the failed block. Hence, in some sense,
each individual generic block is almost
equivalent to an entire redundant string of
components in the conventional approach. For
this reason, the ultra long-life system can
achieve much higher level of reliability while
carrying much less redundant components.

A reliability model shown in Figure 3 illustrates
the reliability of the fault-tolerant architecture
using Generic Function Blocks. It compares a
dual-string system, in which each string has 8
components, to an ultra long life avionics
architecture consisted of 16 Generic Function
Blocks, assuming the Mean-Time-Between-
Failure of each component is 125,000 hours (14
years). It is clear that the Generic Function
Block architecture has much higher reliability
than the dual-string system.

100%

,80%
'c

m
Q,

60%

40%

20%

0%
o 5 IO 15 20 25 30 35 40 45 50

Years

< M E m m m Dual String (component cross-strap)
-Generic Function Block

Figure 3: Reliability of Dual String and Generic
Function Block Systems

Providing connectivity among the generic blocks
is an obstacle in the implementation of the
Generic Function Blocks architecture as the
needed connectivity will be difficult to
determine before launch. This is because a
Generic Function Black should have the
capability to replace any one of the components,
regardless of their relative positions. This may
result in a drastically different configuration
after the fault recovery. Therefore, the
connectivity among components has to be very
flexible. A conventional solution is to use a
switched network connection such as a crossbar
switch. However, the complexity of a switched
network can grow very rapidly with the number
of functional blocks in the system.

The approach taken in this research is to use
wireless interconnection to replace the switched
network (see Figurt: 2). Since the signals of a
wireless network are broadcast, it is not
constrained by the physical locations of the
function blocks as long as the distance between
two blocks is within the broadcast range. This
usually is not a problem for avionics systems
since all the components are confined in small
space in most cases,

FAULT DETECTION IN THE
ULTRA LONG LIFE AVIONICS SYSTEMS

Since the components in the Generic Function
Block architecture are not duplicated, it is more
difficuIt to use duplicate-and-compare or voting
to detect failures. For some failure modes such
as data corruptions, error detection and
correction codes are still applicable. On the
other hand, function block level failure modes
such as crash cannot be detected as directly as
the duplicate-and-compare method. The
conventional method to solve the problem is to
use watchdog timers. However, the detection
latency of a watchdog timer is unacceptable in
many applications.

The approach this research has taken is to use
the Autonomous Testing [2] [3][4]. Autonomous
Testing is a distributed fault detection technique,
in which each component in the system is tested
by several other components and the identity of
failed components are derived from the test

results. As an example, a Generic Function
Block architecture with three function blocks, as
shown in Figure 4, might be considered.
Periodically, each function block in Figure 4 is
tested by itself and another block as follows.

Test

Test

Test

Figure 4: Autonomous Testing System Example

First, each node will perform a self-test. In a
fault free situation, each block should pass the
self-test. This is indicated in the diagram that
each block has a P (Le., pass) in the Test Result
Register under its own name.
Second, in the test phase, each block is tested by
its testers (for the example in figure 4, each
block is tested by another block). For this
example, the block A tests the block B, the block
B tests the block C, and the block C tests the
block A. If there is no fault, each block should
also pass each test. This is indicated in the
diagram that each block has a P in the Test
Result Register under the name of the block it
has tested.
Third, in the diagnostic phase, each block x
forms its opinion about the health status of any
other functional block y either from the result of
testing, if x tested y , or from the opinion of some
other block z such that z is healthy in x’s
opinion. Hence, even though the block A has not
tested the block C, but by the opinion of the
block B (whom the block A finds healthy), the
block A finds that the block C is also healthy
and uses this information to update its Test
Result Register in the host computer
accordingly.

When one of the functional blocks fails, its
upstream neighbor will detect its failure and that

information will propagate to the other
functional blocks in the diagnostic phase, so that
the test results in the failed block will be
ignored. And it has been proven that all the
healthy functional blocks in the system can
deduce a consistent diagnosis fiom the test
results about which function block(s) have
failed. This is illusbated in Figure 5, where the
block B has failed. In the test phase, the block A
detects the block B’s failure and the block C
finds out that the block A is healthy. In the
diagnostic phase, the block C finds out from the
block A that the block B has failed. On the
other hand, the block A finds the block B faulty
and ignores its opinion about other bIock(s) - in
this case the block C. However, since it is
assumed that there is only one failure per
processing cycle, and since the block A already
knows that the block B has failed, therefore the
block A can determine that the block C is
healthy by deduction. Therefore, both the
blocks A and C have a consistent diagnostic that
the block B has failed, so that the block B will
be ignored in subsequent operations. A more
general study of the Autonomous Testing can be
found in l2-41,

wireless interconnections, and (3) fault diagnosis
with distributed autonomous detection.

The “system” that this prototype implements is a
navigator that has a gyroscope, star tracker, and
accelerometer. Each of the sensors has its own
controller, which collect data from the sensor
and send it to a local controller for processing.
The conceptual design of the prototype is shown
in Figure 6.

Generic Function\, G<neric%nctioq
Block ‘\ Block I

‘\ I
r

\
I

Star tracker Il
data

3

Generic Function Block

Figure 6: Navigator implemented by Generic
Function Block

--
Figure 5: Diagnostic with Autonomous Testing

ULTRA LONG LIFE AVIONICS
ARCHITECTURE PROTOTYPE

A prototype of the ultra long life avionics
architecture is being developed at the Jet
Propulsion Laboratory. This prototype is
intended to demonstrate the three key aspects of
the architecture: (1) the feasibility of fault
recovery with generic function blocks, (2) the
feasibility of system reconfiguration with

A Generic Function Block implements each
sensor’s controller in the prototype. Also an
805 1 micro-controller is implemented within the
FPGA. The Generic Function Block contains an
FPGA with 600 thousand gates, a wireless
interconnection interface, a 64 Kbytes of
program memory, and other supporting circuits
and displays.

Figure 7 : Generic Function Block Implementation

The wireless interconnection is a commercial
proprietary protocol, similar to IEEE 802.1 lb
standard [51. An implementation of the Generic
Function Block is shown in the Figure 7.

There are three types of software running on the
Generic Function Block navigation sensor
interface function, autonomous testing, and fault
recovery and reconfiguration. Each Generic
Function Block has the software for all sensor
interface controllers but is assigned to run only
one type of sensor control sofhvare at the system
initialization. The autonomous testing software
executes the autonomous testing. The testing
performed is a simple reading of a watchdog
timer from the Generic Function Block under
test. The Generic Function Block can deduce
which block has failed by examining the testing
results as described in last section. When a
block fails, its function will be assigned to its
upstream block neighbor. This is the
responsibility of the fault recovery and
reconfiguration software.

Due to resource limitations few simplifications
are needed to enable the implementation of the
prototype in a timely manner. First, since there
are no available sensors equipped with the
wireless interface, a host computer is used to
simulate these sensors. The host computer sends
the sensor data to the corresponding interface
controller by broadcasting the data along with
the sensor name (in form of an address). Only
the Generic Function Block that has the correct
sensor controller will accept and respond to
command and data.

Another simplification in this implementation
was to use the host computer as a pass-through
channel and arbitrator for the communications
among the Generic Function Blocks, In other
words, when a Generic Function Block sends a
message to another block, it first sends the
message to the host computer, which then re-
broadcasts the message so that the function
block with the correct destination address will
receive and respond to the message, The host
computer also sets up the Generic Function
Blocks such that no more than one block will
send message at any time. This simplification
alleviates the prototype fiom worrying about the

details of the arbitration protocol, so that more
effort can be focused on the design of the fault
recovery and system reconfigurations.
However, this simplification will be removed
from future prototypes.

The full testbed with all Generic Function
Blocks and the host computer is shown in Figure
8. The system integration and test are still
underway. When the prototype is competed,
the fault recovery with Generic Function Blocks
can be demonstrated by injecting a fault into one
of the blocks (e.g., twhing off the power). Then,
it is expected that the failure will be detected by
the autonomous testing and the task on the failed
block will be assumed by its upstream neighbor.

Figure 8: Ultra Long Life Avionics Architecture Testbed

EXPERIMENT OF HARDWARE
RECONFIGURATION WITHIN A GENERIC

FUNCTION BLOCK

In the prototype, the system reconfiguration and
reaIlocation of functions from one block to
another is basically achieved by software. This
is possible in the prototype because all the
sensor interface controllers have very similar
designs. However, in a more general case, blank
Generic Function Blocks have to be
programmed to replace a failed function block.
In that case, hardware reconfiguration will be
necessary.

The Ultra Long Life Avionics research team at
the Jet Propulsion Laboratory has also
conducted an experiment to reconfigure Generic
Function Block through wireless inter-
connection. A circuit board was constructed for

this experiment as shown in Figure 9. This
circuit board also contains an FPGA and a
number of IiO interfaces. One of the YO
interface, a parallel port, is modified so that it
can accept the configuration for the FPGA from
a computer through wireless interconnection.
The testbed for the hardware reconfiguration
experiment is shown in Figure 10.

The FPGA contains thee simple interface
circuits: an LED interface, an LCD interface,
and a switch interface. In addition, it also
dedicates an area of the FPGA as “spare logic”
that can be reprogrammed to replace either the
LED or the Switch Interface. The circuit board
also includes two sets of switches for fault
injecbon into the LED and Switch Interface
circuits. These two interface circuits detect the
injected faults by monitoring the positions of
these switches. The design of the circuit board
and FPGA is depicted in Figure 1 1.

Figure 9: Hardware Reconfiguration
Demonstration Circuit Board Design

In this experiment, the configuration of the
FPGA was first downloaded from the computer
to the chip through the wireless interconnection.
In normal operation, the System Switches
(Figure 11) could be set such that the LED
interface could turn on an array of LEDs in
different patterns. When a fault was injected
into the LED interface, the LEDs would not be
turned on properly and an error status signal was
sent back to the computer through the wireless
interface. Upon receiving the error status, the
computer downloaded a new configuration file
to the FPGA, again through the wireless
interface, so that the spare logic was used to
replace the LED interface. Similarly, when a
fault was injected to the Switch Interface (Figure
ll), the System Switches would not function
properly and an error status was sent to the
computer. Consequently, a new configuration
file was downloaded to the FPGA, so that the
spare logic was used to replace the Switch
Interface. This experiment was demonstrated
successfully in the testbed.

r LCD

Figure 1 1 : FPGA Design for Hardware
Reconfiguration Demonstration

This hardware reconfiguration capability will be
incorporated in future Ultra Long Life Avionics
experiments.

Figure 10: Hardware Reconfiguration
Demonstration Testbed

CONCLUSION

This paper has explored some unconventional
architecture design techniques that utilize much
less redundant components for sustaining very
long duration missions. An architecture based
on the concept of Generic Function Blocks has
been developed. A prototype of this architecture
representing a navigator subsystem is being
constructed at the Jet Propulsion Laboratory.
This prototype can detect failures in any one of
the Generic Function Blocks by means of
Autonomous Testing through wireless
communication among the blocks. Once the
failed block is identified, software technique is
employed to relocate the tasks of the failed
block to a healthy block.

An independent experiment of reconfiguring the
hardware design of an FPGA through wireless
interconnection has also been conducted. The
experiment was conducted successfully and the
technique will be incorporated into futwe
system reconfiguratiodrecovery experiments.

FUTURE WORK

Many issues of t h s ultra long life avionics
architecture have not bee addressed by the
experiments mentioned above. Examples of
these issues are:

1. The wireless interface in this prototype has to
handle only a few function blocks, and the
arbitration problem is simplified by the host
computer. In the next step, a more
sophisticated wireless protocol should be
developed so that large number of Generic
Function Blocks should be able to
communicate directly with each other
simultaneously.

2. A more realistic testbed need to be
constructed, in which all sensors have
wireless interface and can communicate with
any Generic Function BIoch directly.

3. A “self-repair” capability should be
developed in each Generic Function Block,
so that a failed block can be salvaged and
reused.

4. The wireless interface among the Generic
Function Blocks might interfeTe with the
telecommunication system or other on-board
electronics. The effect of the wireless
interface need to be investigated and design
techniques should be developed to minimize
such interference.

5. Traditional verification techniques such as
accelerated life test might be too expensive or
talung too long to verify the reliability and
lifetime of the Ultra Long Life Avionics
architecture. New verification techniques
have to be developed for systems that are
ultra long life.

ACKNOWLEDGEMENT

The research described in this paper was carried
out by the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with
the National Aeronautics and Space
Administration.

REFERENCES

[l] S. Chau and J. Blosiu, “Ultra Long Life
System Concept, Rev 1,” Internal
Document, Jet Propulsion Laboratory, Feb
16,2001.

[2] A. Sengupta and A. Sen, “On the
diagnosability problem for a general model
of diagnosable systems”, Information
Science, vol. 42, pp. 83-94, 1987.

[3] A. Sengupta and C. Rhee, “On a
generalization of self-implicating structures
in hagnosable systems”, IEEE Trans.
Circuits and Systems, vol. 40, no. 4, pp. 239-
245, Apd, 1993.

[4] Y. C. Shin and A. Sengupta, “Self-
diagnosability of multiprocessor systems
with hybrid faults: diagnosis by comparison
approach“, IEEE Trans. Circuits and
Systems, vol. 40, pp. 355-358, May, 1993.

151 IEEE std 802.11b-1999, “Part 11: Wireless
LAN Medium Access Control (MAC) and
Physical Layer (PRY) specifications:
Higher-Speed Physical Layer Extension in
the 2.4 GHz Band

